If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+36X-98=0
a = 1; b = 36; c = -98;
Δ = b2-4ac
Δ = 362-4·1·(-98)
Δ = 1688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1688}=\sqrt{4*422}=\sqrt{4}*\sqrt{422}=2\sqrt{422}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-2\sqrt{422}}{2*1}=\frac{-36-2\sqrt{422}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+2\sqrt{422}}{2*1}=\frac{-36+2\sqrt{422}}{2} $
| 15+5a=3a | | 6x+2-3=6x-1 | | 6x+2-3=6x-发 | | 5x-45=160 | | Y=123y= | | 3w-8=41 | | 64=8x-6+2x | | 3x+10=4x+53x+10=4x+5 | | 11x+3=8x+6 | | 6-(2x0)=6 | | 9(3-2y)=63 | | (x+1)⁵(x-1)²=0 | | n2-4n+2=0 | | 0.2x+x=80 | | 0.2x-x=80 | | 23x+10=x5+365 | | (2k)(k)=2 | | (2k)(k)=0 | | 2L+2w=0 | | 5.5*x=9 | | 8(4x-14)=14 | | f(-7)=-16 | | 5(−6x+13)=−205 | | 3x+27=7×+3 | | x➗4=3 | | 4x^-4-13x^2+1=0 | | 5()=10x+30 | | 1/2q-4=10 | | 5+15y=40 | | 3+15y=40 | | 9+12y=40 | | m-5/8=-10 |